×

vector function造句

"vector function"是什么意思   

例句与造句

  1. The divergence of a vector function is the scalar function .
    矢量函数的散度是一个标量函数。
  2. It is hard to draw in two dimensions a picture of a vector function in three-dimensional space .
    在两维图上画三维空间的矢函数图形是件难事。
  3. It is true that calculations with vectors and vector functions are often made by resort to descartesian components .
    的确,向量和向量函数的演算通常是依靠笛卡儿分量来做的。
  4. Continuous wavelet transform on the vector function space
    向量函数空间上的连续小波变换
  5. Covariant vector function
    共变向量函数
  6. It's difficult to find vector function in a sentence. 用vector function造句挺难的
  7. Curl of vector function
    向量函数的旋量
  8. A multiwavelet is a wavelet generated by a scaling vector function that consists of several functions . multiwavelet is associated with multiresolution analysis ( mra )
    多小波( multiwavelet )是指由两个或两个以上函数作为尺度函数生成的小波。
  9. Abstract : using the definitions of semi - locally star shaped set and generalized convexity for vector functions . we discuss the existence of efficient solutions for generalized multiobjective programming
    文摘:本文利用1中的半局部星状集和向量函数的广义凸性,讨论了一类广义多目标规划有效解的存在性。
  10. To machine the honeycomb sandwich , an interpolation method based on a rotary axis is also studied . with the round vector function and rotary movement group , a model of the error curved surface of the theoretical ellipsoid is set up to describe the actually measured surface
    以圆矢量函数和回转运动群为工具讨论了曲面的误差变换,利用理论椭球面的误差曲面建立了实测曲面的数学模型,通过求解理论曲面的法线实现了实测曲面的等距计算和阴阳面数据转换。
  11. Motivated by the above results , the third part of this paper considers the equivalence problems that every stationary point or kuhn - tucker point is an efficient solution . we define i - quasi - invex vector function . , i - strictly quasi - invex vector function and kt - i - strictly quasi invex vector function , and derive the above equivalent condition for unconstrained or constrained multiobjective programming
    于是,在本文的第三部分,我们定义了类不变拟凸、类严格不变拟凸、 kt -类严格不变拟凸的向量值函数,并且在无约束或约束多目标规划中,获得了每个驻点(或k - t点)是有效解的等价条件。
  12. The characteristic approximation is used to handle the convection part along the direc - tion of fluid namely characteristic direction to ensure the high stability of the method in approximating the sharp fronts and reduce the numerical diffusion ; the mixed finite element spatial approximation is employed to deal with diffusion part and approximate the scalar unknown and the adjoint vector function optimally and simultaneously ; in order to preserve the integral conservation of the method , we introduce the modified characteristic method
    该方法对方程的对流部分沿流体流动的方向即特征方向离散以保证格式在流动的锋线前沿逼近的高稳定性,消除数值弥散现象;对方程的扩散部分采用最低次混合有限元方法离散、同时以高精度逼近未知函数及未知函数的梯度;为保证方法的整体守恒性,在格式中引入修正项
  13. Using the regularized greens functions and a duality argument , it is proved that the mixed finite element method proposed in this paper possesses the superconvergence by almost one order maximum norm estimates for the l2 projection of the function and quasi - optimal maximum norm estimates for the associated vector function for a strongly nonlinear second order elliptic problem
    本文利用正规格林函数及对偶论证技术证明了一类强非线性二阶椭圆问题混合元方法对函数的l2投影具有几乎超收敛一阶的最大模误差估计,对伴随向量函数具有拟最优最大模误差估计
  14. The new method is a combination of characteristic approximation to handle the convection part , to ensure the high stability of the method in approximating the sharp fronts and reduce the numerical diffusion , a smaller time truncation is gained at the same time , and a mixed finite element spatial approximation to deal with the diffusion part , the sealer unknown and the adjoint vector function are approximated optimally and simultaneously
    此方法即为对方程的对流项沿流体流动的方向即特征方向进行离散,从而保证格式在流动锋线前沿逼近的高稳定性,消除了数值弥散现象,并得到了较小的时间截断误差;另一方面,对方程的扩散项采用混合元离散,可同时高精度逼近未知函数及其伴随向量函数,理论分析表明,此方法是稳定的,具有最优的l ~ 2逼近精度。

相邻词汇

  1. "vector font"造句
  2. "vector for many diseases"造句
  3. "vector form"造句
  4. "vector format"造句
  5. "vector formula"造句
  6. "vector functions"造句
  7. "vector game"造句
  8. "vector games"造句
  9. "vector gauge"造句
  10. "vector generation"造句
桌面版繁體版English日本語

Copyright © 2025 WordTech Co.

Last modified time:Mon, 11 Aug 2025 00:29:56 GMT